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SUMMARY 

A staggered spectral element model for the solution of the oceanic shallow water equations is presented. We 
introduce and compare both an implicit and an explicit time integration scheme. The former splits the equations 
with the operator-integration factor method and solves the resulting algebraic system with generalized minimum 
residual (GMRES) iterations. Comparison of the two schemes shows the performance of the implicit scheme to lag 
that of the explicit scheme because of the unpreconditioned implementation of GMRES. The explicit code is 
successfully applied to various geophysical flows in idealized and realistic basins, notably to the wind-driven 
circulation in the North Atlantic Ocean. The last experiment reveals the geometric versatility of the spectral 
element method and the effectiveness of the staggering in eliminating spurious pressure modes when the flow is 
nearly non-divergent. 

KEY WORDS shallow water equations; spectral element; implicit scheme; GMRES solver; staggered mesh, North Atlantic 

1. INTRODUCTION 

The simulation of large-scale ocean circulation raises particularly challenging issues in computational 
fluid dynamics. Perhaps most importantly, the geometrical complexity of the ocean basins demands 
algorithms that can faithfully represent the highly irregular coastline. These algorithms must be flexible 
enough to allow variable resolution so as to resolve effectively regions with important dynamics, e.g. 
the western boundary currents (a feature of Earth's rotation), the thermocline and the continental shelf, 
without wasting computational resources in dynamically less significant regions. 

The geometric problem is further complicated by the non-linear nature of the free surface whose 
location is unknown a priori and must be computed as part of the solution process. In addition, the free 
surface gives rise to surface gravity waves whose speed of propagation may reach 200 m s-' and 
which limit explicit models to extremely small time steps even though many phenomena of interest 
have much longer time scales. Implicit models can circumvent the stability restriction but have to 
contend with the solution of large systems of simultaneous algebraic equations; their computational 
advantage is therefore largely determined by the efficiency of their solver. 
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Large-scale ocean circulation models have traditionally relied on well-established finite difference 
techniques to discretize the equations of motion. Motivated by a desire for better accuracy and 
geometric flexibility, several models based on more novel numerical methods have emerged in recent 
years. For example, the two-dimensional model of Le Provost and Poncet’ and the three-dimensional 
shallow water model of Lynch and Weme? employ low-order finite elements, the semi-spectral 
primitive equation model of Haidvogel et al. discretizes the vertical direction spectrally with 
Chebyshev polynomials and the horizontal directions with centred finite differences and orthogonal 
curvilinear co-ordinates, Kelly4 solves the reduced gravity shallow water equations with a filly spectral 
method and Ma5 solves the same equations with a spectral element method. 

The present work is part of an ongoing effort to build a spectral element model to solve the three- 
dimensional primitive equations governing large-scale ocean circulation. The spectral element (SE) 
method was developed in order to combine the geometrical flexibility of the traditional low-order finite 
element methods with the accuracy and high convergence rates of spectral methods.6 It has been 
applied successfully in numerous engineering  problem^.'.^ MaS has recently adapted the SE method to 
geophysical flows and applied it successfully to the study of the non-linear reflection of Rossby 
solitons off a western coast. However, Ma’s model uses a non-staggered grid unsuitable for non- 
divergent flows owing to the generation of spurious pressure 

The numerical solution of the three-dimensional primitive equations poses numerous difficulties that 
are best resolved individually. A ‘simplified’ version of the primitive equations was needed to act as a 
test-bed for initial model development and evaluation. It was thus decided to start by developing a code 
to solve the oceanic shallow water equations, a depth-integrated, two-dimensional version of the 
original equations. The two-dimensional version inherits most of the numerical difficulties encountered 
in three dimensions, namely mesh generation, choice of interpolating polynomials, time integration, 
treatment of advection terms and non-linearities, treatment of the free surface gravity wave and finally 
solution of a system of equations if one is generated. 

The paper is organized as follows. The spectral element formulation and discretization of the 
shallow water equations are described in Section 2. The discretization steps are given in some detail to 
show the staggering of the velocity and pressure nodes. The explicit time integration is outlined briefly 
in Section 3. An implicit treatment of the equations is described in Section 4, where the splitting 
technique and GMRES are introduced. Section 5 is devoted to the equatorial Rossby soliton problem 
which has been used as an initial verification of the model and a test to compare the implicit and 
explicit schemes. Finally, Section 6 illustrates the performance and versatility of the SE model for 
oceanic applications in rectangular and realistic ocean basin geometries. 

2. FINITE ELEMENT FORMULATION 

Let SZ be the two-dimensional region occupied by the fluid and let r denote its boundary. The shallow 
water equations in SZ are given by* 

ut + u * v u  + f k  x u +gvr + yu - 

t‘t + V . [(A + l ) ~ ]  = 0, (2) 
where u = (u, v) is the horizontal velocity vector, f i  is a unit vector in the vertical direction, h is the 
resting depth of the fluid, is the free surface elevation, f is the Coriolis parameter, g is the 

* Gent” discusses the energetically consistent form of the shallow water equations, particularly when mass sources and sinks are 
present. 
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gravitational acceleration, y is the bottom drag coefficient, v is the diffusion coefficient, p is the density 
of the fluid, z = (?, I?") is the wind stress acting on the surface of the fluid and V is the two- 
dimensional gradient operator. The subscript t denotes differentiation with respect to time. The 
boundary conditions are Dirichlet conditions on u, v andor i: 

( 3 )  U = U  b on r;j, V = V  b on r;, i= ib on rD; i 

and Neumann conditions on u and v: 

v ~ u - n = q '  on rLl V V V - ~ = ~ Y  on r;. (4) 

Here n is the unit normal to the boundary, 4' and q" are the applied stresses in the x- and y-directions 
respectively (if free-slip BCs are applied on a rectangular domain, for example, 4' = q" = 0)  and ub, vb 
and ib are the values of u, v and ( imposed on specified segments of the boundary. If v = 0, only the 
normal component of the velocity at the boundary can be specified: u * n = ub * n. r$, r; and rL are 
those portions of the boundary where Dirichlet conditions on u, v and i are applied. In the case of no- 
slip conditions r; = r;. r; and r& refer to the boundary segments where Neumann conditions on u 
and v are applied; we must have rl;, n r; = 0 and Tj; n I-& = 0. We refer the reader to Reference 12 
for a discussion on the appropriate boundary conditions to apply for different forms of the shallow 
water equations. 

When the surface displacement [ is much smaller than the resting depth h, the flow is nearly 
incompressible. This can be easily seen by considering the dimensionless continuity equation 

( 5 )  
d 
H 

v * (hu) + - [i, + v * (ill)] = 0,  

where we have scaled the free surface displacement ( with d, the depth h with H, the velocity u with U, 
length with L and time with LIU. For oceanic flows typically d < 10 m and H 2 1000 m, yielding a 
ratio dlH < 0.01. The ratio dlH is even smaller in the deep ocean, where the depth can exceed 
5000 m. In the incompressible limit the pressure interpolation must comply with the so-called 
Babuska-Brezzi or div-stability ~ondition,', '~"~ otherwise spurious pressure modes appear and can 
destroy the solution. Schumack et al. I4 describe several alternatives to circumvent the spurious modes. 
The one adopted here is to use a staggered mesh and interpolate the pressure with a polynomial of 
degree two less than that used for the velocity.' 

The starting point of the spectral element model is the Galerkin formulation of the shallow water 
equations 
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where V and Z are the Sobolev spaces defined by 

vi(n) = {V  E H I @ ) ,  v(rg) = o}, i = U, V ,  

z(n) = { v  E H I ( R ) ,  v(rL) = o}. 

H' is the set of square integrable functions whose first derivatives are also square integrable; w", w" and 
WP are the weight functions associated with the x- and y-components of the velocity and the surface 
elevation respectively. 

The spatial discretization proceeds by subdividing the domain into a set of conforming quadrilateral 
isoparametric elements. The elements may have curved sides in the physical domain; in the 

- computational domain (t, q )  they are individually mapped into the square 
- 1 < q < 1. On each element the variables u, v and C are interpolated as 

i z l  j=1 

where (uW vii) is the velocity vector at the velocity collocation nodes (ti, qi), (i, j) = 1, . . . , N", and Cii 
is the surface elevation at the pressure collocation nodes (($, $), (i, j )  = 1, . . . , N f .  The u,, v, and Cii 
are functions of time only. N" and Np are the numbers of nodes per element in the t- and q-directions 
for the velocity and pressure interpolations respectively; therefore Np = N" - 2. 

The interpolation functions hr are the Legendre cardinal  function^'^ 

LN" - 1 denotes the Legendre polynomial of degree N" - 1 and Lhv - I denotes its derivative. The tr are 
the N" Gauss-Lobatto nodes: they are the roots of ( I  - t 2 )Lhv-  It is easy to show that 
hr(<,!) = 6,, where 6 ,  is the Kronecker delta. The pressure interpolation functions are defined 
similarly but with the superscript v replaced by p. Figure 1 shows a typical element and the lay-out of 
the velocity and pressure Gauss-Lobatto nodes. The Gauss-Lobatto nodes are not evenly spaced as 
sketched in the figure but are actually more crowded near the boundaries. The present staggered mesh, 
unlike the meshes of Ronquist" and Schumack et a1.,14 preserves the continuity of the pressure at the 
inter-element boundaries. 

A system of ordinary differential equations (for u, v and C )  is obtained after inserting (9) in (6H8) 
and substituting hyh; for w" and w", and gy for d: 

du 
dt 
dv 

M" -+ (yM" + vD)u - F v + g P y  +A* = r", 

+ Fu + (yM" + vD)v + gPY5 + AY = 9, 

MP - + C u  + cyv + A' = 0, 

M" 

d5 
dt 
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Figure 1 .  Isoparametrk element in computational plane. The Gauss-Lobatto points of the velocity nodes are shown by open 
circles and the pressure nodes by full circles. The local node numbers of the velocity nodes are shown outside the element, while 

those of the pressure nodes are shown inside. Np = Ivy - 2 

where the matrices are defined as 

Equations (I I )  hold at the elemental level. The assembly procedure adds the contributions of the 
different elements to the system of equations. The non-linear terms are grouped in A", Ay and A* in 
anticipation of the splitting scheme; the rest of the terms represent the action of linear operators only. 
The matrices M' and M p  are the mass matrices associated with the velocity and pressure interpolation 
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functions respectively. The mass matrices are positive definite, symmetric and densely populated if the 
integrals are evaluated analytically; they are banded with a large bandwidth at the global level. 

Note that even an explicit time-integration scheme requires the inversion of the matrices M" and h@'. 
A judicious choice of the interpolation polynomial and the integration rule can reduce substantially the 
amount of memory and CPU time needed to store and invert the system of equations. This choice is 
Legendre cardinal functions for the interpolation and Gauss-Lobatto quadrature for the integration 
(exact for polynomials of order 2N" - 3 ) .  The combination of Lagrangian interpolation and numerical 
quadrature yields a diagonal mass matrix. Tremendous savings in computations and storage can thus 
be achieved for a negligible loss in accuracy (see e.g. References 10, 16 and 17). To show how the 
diagonal mass matrix is obtained, we derive the expression for M" as 

1 

Mr;, kl = 11, IJlhy(r)hi"(?)hi(r)hr(l?) dl dq 
- I  

N' N' 

where Jkl = (xcyq - x,p,F)kl is the Jacobian of the mapping from the physical space to the 
computational space evaluated at the node ((1, $'), and n; is the pth weight of the Gauss-Lobatto 
quadrature (p = 1, . . . , A'"). We have used the identity h r(t;) = 6 i k  to eliminate the sums on p and q 
and to obtain the final diagonal form. Since the elemental mass matrix is diagonal, so is the global 
mass matrix. Hence the global mass matrix can be stored in a one-dimensional array and its inverse is 
just the inverse of the diagonal entries. The same procedure applies to the pressure mass matrix Mp 
with a Gauss-Lobatto quadrature of order Np. 

The drawback of a staggered mesh is the need to move information between the pressure and 
velocity grids. This exchange is necessary to evaluate those integrals in (12) that involve variables 
defined on both grids, namely P, P, C, C? and A". The interpolation between the two grids involves 
matrix-matrix products of the form 

The number of floating point operations required to perform the above interpolation is rather costly 
(compared with finite difference methods) and is approximately, after taking advantage of the tensor 
product nature of the multiplications, 2N"NP(N" + Np)  per element. Cross-grid interpolation must be 
avoided as much as possible. Our current implementation interpolates [ and its gradient onto the 
velocity grid. The gradient calculations are done in one step, i.e. immediately from the pressure grid to 
the velocity grid, e.g. 

The above calculation is slightly more expensive than calculating on the pressure grid: 

Note that the gradient of c on the pressure grid is not needed. We should also point out that the order 
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1M quadrature associated with the pressure grid is used in the calculations of Mp only. All other 
integrals are approximated with the higher-order quadrature of the velocity grid (order N"). 

3. EXPLICIT TIME INTEGRATION 

The explicit time integration of equations ( 1  1) is performed with a third-order Adams-Bashforth 
(AB3) scheme which we outline briefly. Each of the equations in (1 1) can be written in the generic 
form Mduldt = r, where u and r are the vector of unknowns and the vector of right-hand sides 
respectively and M is one of the mass matrices. The AB3 scheme takes the formI8 

The calculations require information at two previous time levels and thus a start-up method is needed 
at the initial time step; we choose a fourth-order Runge-Kutta scheme. Notice that there is no need to 
compute or assemble explicitly the matrices in equation (1 l), since u, v and are known at the previous 
time levels. Instead, the integrals in (12) are computed individually (e.g. the pressure gradient terms, 
the Coriolis force, the advective acceleration) and then summed up and assembled into the right-hand- 
side vector r. The vector r is the only quantity, besides the inverse of the mass matrices, that needs to be 
assembled. 

The stability of the explicit scheme is determined by the smallest of the stability limits of the 
advection operator, Ata, and diffusion operator, Atd. Ma5 gives these stability limits as Ata < alL/ 
UN2K and Atd < a2L2/vnpK2, where U is the speed of the fastest-moving wave in the problem (in 
oceanic flows this is the free surface gravity wave U = J(gh),  L is the length scale, v is the kinematic 
viscosity, N is the number of polynomials in the interpolation, K is the number of elements and a, and 
ad are proportionality constants. The ratio AtdlAta is proportional to RelN2K, where Re = ULlv is the 
Reynolds number. Hence, as long as the Reynolds number is larger than N2K, as is the case in most 
ocean flows, the advection operator determines the largest allowable time step. Typical values of 
U = 200 m s-', L = 1000 km, v = 2000 m2 s-', N = 12 and K = 30 yield a ratio of 105/4000 = 20. 
The time step for a grid with medium to high resolution varies from 2 to 6 min when the model is run 
in reduced gravity mode (surface wave speed of about 2-5 m s-'; Reference 5 and present work) and 
from 5 to 15 s for a full gravity model with surface wave speeds between 100 and 200 m s-l (present 
simulations). Given that the time scales of interest are much longer than those associated with the 
stability limits, it seems worthwhile to look for an implicit scheme that relaxes the severe stability 
restriction imposed by the free surface gravity wave. 

4. IMPLICIT TIME INTEGRATION SCHEME 

An ideal implicit integration scheme would have two main properties: (1) unconditional stability and 
(2) a fast and efficient means of solving the resulting system of equations. We have tried to reach these 
two goals by splitting the equations into their linear and non-linear parts. The splitting is carried out 
with the operator-integration factor method of Maday et al. I 9  The linear terms are integrated implicitly 
in time with a second-order backward differentiation scheme, while the non-linear terms are treated 
explicitly with a second-order Runge-Kutta scheme. The implicit integration generates a system of 
algebraic equations that is solved iteratively at each time step with the GMRES method of Saad and 
Schultz.20 
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4.1. Operator splitting 

A straightforward explicit treatment of the non-linear terms might mitigate the advantages of an 
implicit formulation, since the stability limit, as set by the non-linear advection operator, may force the 
implicit solver to be called upon more often than desired. This is a serious drawback when the 
equations to be solved are stiff andor the solver is not very efficient. Semi-Lagrangian schemes" have 
proven very successhl at relaxing the advective stability limit and increasing the length of the 
integration time step. In the present work we adopt the operator-integration factor method of Maday et 
a l l9  to separate the integration of the linear terms from that of the non-linear terms. The former are 
integrated implicitly, while the latter are integrated explicitly. The conditional stability of the explicit 
scheme does not affect the stability of the implicit part, because the two integrations are uncoupled. 
The distinct advantage of the operator-integration factor method is that it can consistently generate 
high-order time-splitting schemes for a variety of operators. (Maday et al., for example, apply it to 
decouple the pressure-velocity integration of the Stokes problem.) In the case of the advection 
operator Maday et al. show that the splitting is tantamount to computing an approximation to the 
material derivative and that the splitting can be interpreted as a characteristic/Lagrangian 
s ~ h e m e . ' ~ ' ~ ' ' ~ ~  A brief description of the splitting procedure is given in the Appendix. Here we give 
the equations in their split form. 

The time discretization of the linear operators (the B-operator in the Appendix) with a second-order 
backward difference scheme yields 

If ao, a l  and a2 are equal to 1, 1 and 0 respectively, we have the first-order backward difference 
scheme, while if they are equal to $, 2 and 4 respectively, we have the second-order backward difference 
scheme. The u n - q + l ? q M  and ? - q + l ) q M ,  where q equals 1 or 2, are the velocity vector and surface 
elevation respectively computed from the auxiliary problem (the A-operator of the Appendix); we will 
give the auxiliary problem shortly. The wind stress term is linearized by evaluating 5 in the 
denominator at the previous time level. The neglected terms are O(AtC,/(h + [)), which are quite small 
in the deep ocean. Note that the wind stress is identically zero in our Rossby soliton test problem and 
hence the method is second-order in time. The spatial discretization of (1 7)-( 19) proceeds as in Section 
2 and the final system of equations becomes 

[ (5 + y)MV + VD] U" + 1 - 

Fun+'+  [ ( 5 + y ) M v + v D ] f l + ' + g P Y ~ " + '  =RY,  
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The variables with the tilde on the right-hand side of the above equations are computed by 
integrating the auxiliary problem (the A-operator in the appendix) 

aT"-q+I  at" - q+ 1 f i n  - q+ I ap - q+ l i j n  - q +  I 

I (28) 

(29) 

(30) 

(31) 

- - - - 
as ax GY 

(s = 0) = un-q+l ,  i j n - q + l  

v-4+ys = 0) = f l - q + l  

, p + l ( S = O )  = c n - q + I  

between s = 0 and s = t"+l - F q + l .  The integration is done explicitly with a second-order 
Runge-Kutta scheme. The discretization and integration of (26H28) are similar to the explicit 
procedure of Section 2 and will not be repeated here. The integration is performed twice for a second- 
order scheme: once for q = 1 and once for q = 2. The accuracy can easily be made third-order at the 
expense of integrating (26x28)  a third time with q = 3; the order of the integration in the auxiliary 
problem would also have to be increased, by moving to a third- or fourth-order Runge-Kutta scheme 
for example. Our experience has been that most of the CPU time is spent in the iterative solver and 
hence increasing the order of the time differencing would not greatly increase the CPU time. 

4.2. GMRES and FEM 

The implicit scheme yields the system of equations (17x19)  that needs to be solved at each time 
step for the unknowns ufl+l, vn+' and r+'. This system is non-symmetric, indefinite and its bandwidth 
is large compared with the bandwidth of algebraic systems arising from low-order finite element 
methods. The memory required to solve large multidimensional problems precludes the use of direct 
solvers. An efficient iterative solver is clearly required. Few iterative solvers are well suited to non- 
symmetric and indefinite systems and ever fewer prove to be effective on general systems of equations. 
The solver we have tested is the GMRES method of Saad and S ~ h u l t z . ~ ~ , ~ ~  

The main feature that makes GMRES attractive in the context of the FEM is that the global stiffness 
matrix need not be assembled. The algorithm requires the formation of matrix-vector products which 
can be performed at the elemental level and only the resulting vectors need to be assembled. Moreover, 
there is no need to store any elemental matrices, since the integrals in (12) can be recalculated cheaply 
at each iteration. In practice it is useful to store the mass matrices, since they are needed frequently in 
the course of the computations. It is also useful to assemble the global mass matrices and their inverses. 
The assembly, storage and inversion of the mass matrices are very efficient and simple, since these 
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matrices are diagonal. The sequence of operations required for the GMRES algorithm is very similar to 
the sequence of an explicit time-stepping procedure. 

Table I illustrates the storage that different implementations of the implicit spectral element method 
require. The first implementation used Chebyshev cardinal functions and a banded LU solver, the 
second one substitutes GMRES for LU and the last one abandons the Chebyshev functions for the 
Legendre functions and their concomitant Gauss-Lobatto quadrature. The data are taken from an early 
run of the equatorial Rossby soliton experiment to be described more fully below. The basin is 
rectangular and the mesh consists of eight elements zonally and four meridionally; each element has 8 1 
interpolation nodes and the total is 2145 (6438 degrees of freedom). The local matrix equations are 
stored for the GMRES solver and the Krylov subspace has dimension five. Most of the memory in the 
LU solver is wasted on storing the zero entries. The Legendre GMRES implementation requires the 
least amount of storage, because the numerical quadrature yields sparse elemental matrices that 
consume five times less storage than a comparable Chebyshev implementation. 

5 .  EQUATORIAL ROSSBY SOLITON 

We have reproduced the propagation of the equatorial Rossby soliton of Boyd24 with our staggered SE 
model. The shallow water equations were solved in their nondimensional form. The time (T), length 
(L )  and velocity (v) were scaled with the Lamb parameter E:24 

where a is the radius of Earth and R is its angular speed of rotation. The depth was chosen to be 41 cm 
so that the surface gravity wave speed was 2 m s-’ (the wave speed of the first baroclinic mode). 
These values yield a time scale of 41 h and a length scale of 295 km. Harmonic and bottom frictions 
were set to zero and the wind stress was turned off. The asymptotic solution predicts a balance between 
dispersive and non-linear effects that allows the soliton to preserve its shape while travelling westward 
at a constant phase speed. The numerical solution reproduced this behaviour quite faithfully. Figure 2 
shows the surface displacement at the beginning and end of the simulation. The discrepancies between 
our solution and Boyd’s asymptotic solution are negligible and are due to the asymptotic nature of 
Boyd’s solution. The SE model gives a phase speed of 0.76 m s-’, while the asymptotic solution 
predicts a value of 0.78 m s-’. 

We have used the equatorial Rossby soliton problem to compare the performances of the implicit 
and explicit schemes. For the implicit scheme the GMRES solver requires the storage of the basis 
vectors of the Krylov space. Each vector has the size of the number of degrees of fieedom in the 

Table I. Storage in megabytes required by the implicit version 

Solver 

Banded LU GMRES GMRES 

Cardinal functions Chebyshev Chebyshev Legendre 
Integration Analytical Analytical GL quadrature 
Memory (MB) 8 1.23 12.37 2.41 
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problem. Hence storage increases linearly with an increase in the dimension of the Krylov space, M. 
In general a larger M means a higher convergence rate and hence fewer iterations to achieve 
convergence. However, the operation count per iteration increases and so does the CPU time. Storage 
was not a problem in the present test, for larger problems, however, M should be kept as small as 
possible. 

The efficiencies of the implicit and explicit schemes were compared based on the CPU time required 
to integrate the shallow water equations up to a fixed time T = 17.82 non-dimensional time units. The 
CPU time was recorded at the end of each run, as were the average number of iterations required for 
the solver to converge and the maximum error in the solution. The errors were computed based on a 
reference calculation with the explicit code using a time step 10 times smaller than the stability limit. 
The latter was determined experimentally to be about At, = 0.033 non-dimensional time unit. The 
CPU time and error of the explicit code were obtained by running the explicit code with the time step 
set to the stability limit. Note that the AB3 scheme produces small time discretization errors, because 
the time step has to be small and the scheme is third-order-accurate. The CPU time of the explicit code 
was CPU, = 30.28 s as measured on an IBM RS/6000 model 550 (all runs were performed on this 
platform). 

The question we ask is: is there a range of parameters where the implicit scheme would be more 
cost-effective than the explicit scheme? Three series of implicit runs were performed in order to tune 
the different parameters of the implicit solver, namely the dimension of the Krylov space, M, the 
convergence criterion of the GMRES solver, E ,  and the optimal time step Ati. The first series was meant 
to determine M E and Ati were kept constant at lop6 and 5At, respectively, while M was increased 
from 5 to 50. Figure 3 shows the ratio CPUi/CPU, and the average number of iterations, i,. The 
number of iterations decreases steadily and the dimension of the Krylov space is increased, but the 
curve flattens out considerably beyond M = 20. The CPU curve shows the same behaviour and so we 
have set M to 20 for the remainder of the computations. 

Figure 2. Propagation of an equatorial Rossby soliton: (a) initial surface displacement; (b) surface displacement after 8.5 days 
( t  = 22 non-dimensional time units) 
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Figure 3.  Effects of dimension of Krylov space, M, on convergence rate and CPU time: -, ratio of CPUi to CPU,; --, number 

of iterations required for convergence. E = and Ati/Ate = 5 

A second series of tests was performed to determine the best convergence criterion: Ati = 5Ate and 
M = 20 were kept constant, while E was decreased from to lo-''. Figure 4(a) shows the increase 
in CPU time and iteration number as E decreases. The convergence criterion E must be chosen as large 
as possible without increasing the error in the solution. Figure 4(b) shows the ratios of the maximum 
errors in the implicit and explicit schemes for u, v and c. The ratios do not decrease for E < low5, 
because the errors are dominated by the time discretization error rather than by the error arising from 
the approximate solution of the system of equations. 

The third series of tests was used to determine the optimal time steps: E = lop5 and M = 20 were 
kept constant, while A6 was increased from 2Ate to 30Ate. Figure 5(b)  is a plot of AtilAte versus the 
ratio of implicit and explicit errors. Figure 5(a) shows an alarming trend in the number of iterations 
and CPU time needed to achieve convergence as the time step is increased: both increase with the time 
step. Hence there are no benefits in increasing the size of the time step for the present implicit scheme. 
The cost could be partly alleviated by making the convergence criterion less stringent as the time step 
is increased. There would be no harm in doing so, since the temporal error would also increase. 

1 o.2 

1 o . ~  

1 o.* 

Convergence criterion 

10.10; 1 0 - 1 o L  
1 o2 1 o3 I o4 200 400 600 800 1 0 0 0  

ratio of error 
(b) 

Figure 4. Effects of convergence criterion E on CPU time and errors: (a) -, CPUi/CPU,; --, number of iterations required for 
convergence; (b) ratio of errors (implicit error/explicit error) in u (-), v (--) and 5 (- . -). M = 20 and Ati/Ate = 5 
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Figure 5. Effects of time step ratio Ati/Ate on CPU time and errors: (a) -, CPUi; --, number of iterations required for 
convergence; (b) ratio of implicit and explicit maximum errors in u (-), v (--) and [ (- . -). M =  20 and E = lo-' 

The present implicit implementation is clearly not satisfactory. We are currently evaluating alternatives 
to GMRES (e.g. the QMR algorithm) and possible simple preconditioning schemes. We do not pursue 
the issue further here. The rest of our results were obtained with the explicit scheme exclusively. 

6. NUMERICAL APPLICATION 

The accuracy and fast convergence rate of the SE model are best illustrated with a simple analytic 
problem; the convergence of the numerical solution can then be monitored as the spatial resolution is 
increased. We have chosen the problem of a linear and inviscid standing wave in a square basin of unit 
width and depth. The analytic solution of the inviscid linear shallow water equations is 

1 .  
u = - sin(m) cos(ny) sin(J2nt), Jz 

1 
v = - cos(nx) sin(ny) sin(J2nt), d2 
= cos(m) cos(ny) cos(J2nt). 

We have normalized the gravity coefficient to unity and set the viscosity, the bottom drag coefficient, 
the Coriolis parameter and the wind stress to zero. We have used very small time steps in our 
calculations so that the error is dominated by the spatial discretization errors even at the highest spatial 
resolution. The numerical and analytical solutions were compared at t = 2 (1.41 wave period) and the 
maximum errors in the velocity and surface height were computed. Figure 6(a) shows the exponential 
decrease in the error of the SE solution as the order of the interpolation polynomial is increased for 
one-, four- and nine-element partitions of the basin. The error decreases by several orders of magnitude 
when N" is doubled. The curve for the nine-element partition flattens out near W = 13 because of finite 
precision arithmetic; the errors incurred are zero to machine accuracy. The velocity and pressure errors 
seem to decrease at the same rate, which must then be dictated by the resolution of the pressure mesh. 
Figure 6(b) shows the algebraic (fixed-order) rate of convergence of the SE solution as the number of 
elements is increased for constant W. Notice that this rate is not fixed but increases with W. The 
present example illustrates how the accuracy of the spectral element method can be improved either by 
increasing the order of the interpolation polynomial while keeping the element partition fixed or by 
increasing the number of elements while keeping the order of the interpolation polynomial fixed; in 
either case the convergence is more rapid than in low-order methods. 

The SE solution of the full shallow water equations has also been compared with a finite difference 
solution computed by Milliff and M~Wil l iams .~~ Their numerical solution relies on the well- 
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NV 

K 

Figure 6. Maximum error in the spectral element (SE) method for the linear sloshing prc m: (a) SE error versus K or one- 
element (-), four-element (--) and nine-element (- . -) partitions (*, error in (; +, error in u, v); @) SE errors versus number 

of elements in each direction for A'" = 5 (-), Ivy = 7 (--) and K = 9 (- . -) 

established Sadoumy to discretize the governing equations. Milliff and McWilliams study the 
reflection of a monopole vortex off the western coast of an idealized ocean basin in order to elucidate 
the role that boundary pressure plays in coupling coastal and interior dynamics. 

We use the same boundary conditions (free-slip) and physical parameters as Milliff and McWilliams 
except for the friction coefficient. The basin size is 3600 x 2800 km2 (from 23% to 48"N), the basin 
depth is 1000 m, the reduced gravity is 0.081 m2 s-', the Coriolis parameter at mid-latitude is 
9 x lo-' sC1 and the linear variation in the Coriolis parameter with latitude is 1.8 x lo-'' m-I s-'. 
Milliff and McWilliams employ a biharmonic friction with a hyperviscosity of 9.3 x lo9 m4 s-'. We 
use harmonic friction with a viscosity of 50 m2 s-'. The two frictions have the same spin-down time 
on waves with length scales of about 14 km. Our grid consists of 266 elements, with 121 nodes per 
element for the velocity grid and 81 for the pressure. The total numbers of nodes are 26,931 and 
17,289 for the velocity and pressure grids respectively. The elements are uniform in the interior of the 
basin (200 x 200 km2). We have refined the elements along the western boundary by using elements 
of 100 km width. This was necessary in order to resolve the western boundary current (estimated 
width of 23 km) and the short waves arising from the reflection of the Rossby wave. 

We start the motion with an initial monopole vortex in gradient balance, as in Reference 25 (Figure 
7), and track its evolution by plotting pressure contour at 40 day intervals. Figure 8 compares the finite 
difference and SE solutions at day 160 (the contour levels were chosen so as to reveal the presence of 
the scattered Rossby waves). The two models give the same results and phenomenology. The reflection 
of the vortex off the western boundary triggers Kelvin waves that propagate along the sides of the 
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Figure 7. Contour plot of the depth anomaly for a monopole vortex in gradient balance at day 0 

, / / I , / ,  ............................. .............................. 1 .... .--- .".? ..... j..;. . .  .................. ......... 
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Figure 8. Contour plots of the depth anomaly for a monopole vortex reflecting off the western coast at day 160: (a) finite 
difference solution; (b) spectral element solution 
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basin, As the Kelvin waves travel along meridional boundaries, they scatter mass into interior Rossby 
waves (see the eastern boundary region in Figure 8). 

Lastly, we demonstrate the ability of the spectral element method to handle complex geometries by 
studying the wind-dnven circulation in the North Atlantic Ocean. The discretization of the region, with 
and without the interpolation nodes, is shown in Figure 9. The mesh has 1 18 elements, each containing 
12 1 interpolation nodes for the velocity and 8 1 for the pressure. The total numbers of nodes are 12,120 
and 7,808 for the velocity and pressure grids respectively. The minimum, maximum and average 
distances between interpolation points on the velocity grid are 5, 214 and 65 km respectively. 
The largest elements are located at the eastern side of the basin. On the western side we use small 
elements in order to resolve the western boundary current. The wind forcing is taken from the monthly 
ECMWF data sets and averaged over a period of 1 year; the wind forcing was then applied steadily in 
time. 

, 

(b) 
Figure 9. Spectral element mesh of the North Atlantic: (a) the elements; (b) the elements with the interpolation points 
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The first simulation shows what can go wrong when the non-staggered grid is used for the solution 
of the shallow water equations in the incompressible limit. The depth is constant at 1000 m and the full 
gravity is used (g = 9.81 m s-*), yielding 100 m s-' for the speed of the free surface gravity wave. 
We choose a very small time step, 3.6 s, to guard against instabilities. The friction is provided by linear 
bottom drag with coefficient y set to lo-' sC1 (a spin-down time of about 100 days) and by Laplacian 
friction with viscosity set to 50,000 m2 s-'. This viscosity is huge, but the non-staggered code would 
not mi with a smaller value. The simulation is started from rest and the wind is increased from zero to 
full amplitude over 12 days. Figures lO(a) and ll(a) show the contours of the u and [-fields 
respectively 10 days after the start of the calculations. The velocity contours are smooth and betray 
only small oscillations in the centre of the basin. The c-contours, on the other hand, are contaminated 
by spurious pressure modes. The same run was repeated with exactly the same parameters but using 
the staggered grid; the results are shown in Figures lO(b) and ll(b). The u and c-fields are now 
smooth; the staggering we adopted has effectively eliminated the spurious pressure modes. We should 
note that the depth of the present basin, 1000 m, is rather shallow, but we had difficulties running the 
non-staggered scheme on a 5000 m deep basin; the computations failed catastrophically even with the 

Figure 10. Contours of u for the wind-driven circulation in the North Atlantic at day 10 (At = 3.6 s, v = 5 x lo4 mz s-I): (a) 
non-staggered grid; (b) staggered grid. urnin = -2.4 cm s-', urn, = 4.0 cm s-' and Au = 0.64 cm s-' 
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Figure 1 1 .  Contours of ( for the wind-driven circulation in the North Atlantic at day 10 (At = 3.6 s, v = 5 x lo4 m2 s-I): (a) 
non-staggered grid; (b) staggered grid. lmin = - 14 cm, (,, = 18 cm and A5 = 3.2 cm 

large viscosity. In contrast, the staggered grid model can be run with significantly reduced viscosity 
(2 1000 m2 s-l) and with larger time steps. The present simulation with its 1000 m deep ocean 
illustrates the need for the staggered grid even at moderate depths. 

To confirm that the staggered grid model is capable of extended integration at low values of the 
viscosity, we have repeated the above experiment with new parameters. The model is run in reduced 
gravity mode in order to simulate the response of the first baroclinic mode to the wind forcing. The 
gravity coefficient and the depth are set to 0.02 m sP2 and 1250 m respectively so that the gravity 
wave speed is 5 m s-l and the Rossby radius of deformation is about 56 km at the centre of the basin. 
The time step is increased to 2 min and the viscosity is set to v = 2000 m2 s-'. The wind forcing is 
now provided by the monthly ECMWF winds instead of the annual mean. Figure 12 shows a snapshot 
of the depth anomaly contours, c, 8 years after the start of the simulation. One can see the development 
of a distinct western boundary current with an estimated Munk layer thickness of about 40 km at mid- 
latitudes. Notice also that the method does not require any special treatment to handle multiply 
connected regions (e.g. the islands of Cuba and Haiti were taken into account). 
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Figure 12. Depth anomaly contours, 5, 8 years after the start of the simulation (At = 120 s, v = 2 x lo3 mz s-I). 
cmin = -203 m, c,, = 106 m and A t  = 15.45 m 

7. DISCUSSION AND CONCLUSIONS 

We have described a staggered spectral element model to solve the oceanic shallow water equations. 
Several numerical experiments were conducted to verify the model and to compare its behaviour with 
that of more established models. The North Atlantic simulation in particular illustrates the versatility of 
our spectral element method in handling complex geometries and nearly divergence-free flows. The 
choices of Legendre polynomials, numerical quadrature and explicit integration are imperative to make 
the method competitive with other numerical models. The implicit scheme we presented is 
handicapped by the lack of an efficient solver. 

General application of our spectral element model to problems in regional and large scale ocean 
circulation modelling requires fixher implementation and improvement in several areas. For example, 
a robust, flexible and automatic grid generation code is an important prerequisite to exploit the full 
geometrical advantages of the spectral element model. Unstructured grid generation would be ideal; 
unfortunately, this technique is more suitable for triangles than quadrilaterals. Our efforts to transform 
a triangular mesh of the North Atlantic (based on Delaunay triangulation) into a quadrilateral mesh by 
merging triangles were fruitless. Some of the quadrilaterals were degenerate with large obtuse angles 
and the mapping of others turned out to be singular. Our current grid generation code relies on block- 
structured techniques. The basin is first divided into large blocks that are mapped conformally into 
rectangles. The spectral elements are generated in these rectangles and the locations of the spectral 
nodes in the physical domain are computed. The different blocks must then be pieced together. The 
whole process requires quite a bit of manual intervention at the present time, but we are writing several 
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programmes to automate the different steps. We are also evaluating several grid generation packages 
that would help improve our gridding capabilities. 

Although an appropriate test-bed for the spectral element method and a relevant idealization to 
several topical problems in contemporary ocean modelling (see e.g. Reference 25), the shallow water 
equations are not suitable for the study of many important oceanographic phenomena such as the 
thermohaline circulation and the ocean’s role in the climate system. Exploration of these problems will 
clearly require the utilization of the fill three-dimensional primitive equations or an appropriate 
approximate system. Design criteria include the accurate representation of the effects of topography 
and of the surface and bottom boundary layers, the development of time-stepping procedures for the 
efficient treatment of the internal and external modes on an unstructured grid, and the utilization of 
high-performance (parallel) computing platforms to enable affordable basin- and global-scale 
integrations on (at least) decadal time scales. The domain decomposition philosophy underlying the 
spectral element technique and the large ratio of inter-element computation to intra-element 
communication suggest that these models will be well suited to the parallel computing environment. 
Conceptual development of the three-dimensional model and its parallel implementation are both 
under way, 
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APPENDIX: OPERATOR SPLITTING 

The spatial discretization gives rise to a system of equations of the general form 
du 
dt - = A(t)u + B(t)u + f ( t ) ,  (33) 

where u is the vector of unknowns, A is the matrix representing the discretized stiff operators, B is the 
matrix representing the discretization of the computationally intensive operators and f is the vector of 
forces. The aim of the splitting method is to separate the time integration of the A- and B-operators. To 
this end we multiply the above equation by the integration factor matrix Q(t*, t): 

du 
Q(t*, t )  5 = Q(t*, t)A(t)u + Q(t*, t)[B(t)u + f(t)]. (34) 

Q(t*, t )  is defined as 

dQ(t*l t ,  = -Q(t*, t )A( t ) ,  Q(t*, t*) = I ,  dt 
where I is the identity matrix. The definition of Q implies that (34) can be rewritten as 

d[Q(t*l t)ul = Q(t*, t)[B(t)u + f(t)]. 
dt 

(35) 

Equation (36) is an ordinary differential equation in the unknown Q(t*, t)u which involves the B- and 
Q-matrices only. The problem becomes one of calculating Q, which is defined as the exponential of 
matrix A by equation (35). Q is not constructed explicitly, since the exponential of a general matrix 
is not easy to form. Note that the integration of (36) involves the product Q$, where $ could be u, 
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Bu or f. The formulation of these products can be accomplished through the integration of the 
auxiliary problem 

$(t*,  1; s = 0) = yqt), d* 
-= A(t+s)ll/,  ds 0 < s < t* - t ,  (37) 

where s is the independent variable and t* and t are parameters. Multiplying both sides of (37) by 
Q(t*, t + s) and invoking the definition (35), equation (37) becomes 

= 0, d < f t [ Q ( t * ,  t + s ) $ ( t * ,  t ;  s)] 
ds 

which implies that the product Q(t*, t + s)$ ( t * ,  t; s) is constant in s and hence 
Q(t*, t)$(t*, t; s =O)=Q(t*, t*)$(t*, t; t* - t). Since Q(t*, t*) = I and $(t*, t; s = 0) = Il/(t), we 
have 

Q(t*, t)lC/(t) = $(t*,  t ;  t* - t ) .  (38) 

Hence forming the products Q+ amounts to integrating the auxiliary problem (37) from s = 0 to 
t* - t. 

The procedure outlined above effectively decouples the time integration of the A-and B-terms. The 
time integration of the B-operator is effected through equation (36) and that of the A-operator through 
equation (37). As noted in the original paper of Maday et ~ l . , ' ~  the operator-integration factor 
procedure is not a time-stepping scheme in itself but is a mean to generate consistent time-splitting 
schemes. 

Our implicit procedure uses a second-order backward differentiation scheme18 to integrate (36) 
in t and a second-order Runge-Kutta (RK2) scheme to integrate (37) in s. The time discretization of 
(36) is 

There are two Qu products to compute with the auxiliary problems: 

(40) 
dun 
-=A(t"+s)ii",  ds O < s < t " + ' - f ,  Un(S = 0) ="", 

The discretization of (39) with the RK2 scheme gives 

i (42) a n  - 1 ~ m + 1 - - u  - n  - 1, m+hAn - I ,  m + 112 U - n  - 1 ~ m + 112 
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where As = AtlM, iin-’,’ = un-l and m = 0, 1, . . ., 2M - 1. A similar set of equations can be 
obtained from (40): 

1 (44) p m + l  - g , m  - + ~ s ~ n l m + I / 2 - n , m t 1 / 2  u 

where As = AtlM, Un,’ = U” and m = 0, 1, ..., M - 1. Note that the choice of a backward difference 
scheme relieved us from computing terms such as QB and Qf. 
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